Homework 7

Due February 29th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. There are some hints on the second page.

1. (a) Verify that the functions $1, x$, and $\cos x$ are mutually orthogonal on $(-\pi, \pi)$.
(b) Find constants a, b, and c that minimize $\int_{-\pi}^{\pi}\left|x^{37}-a-b x-c \cos x\right|^{2} d x$.
2. Let D be the unit disk in \mathbb{R}^{2}, and consider the boundary value problem $\Delta u=0$ in D, $\left.u\right|_{\partial D}=f$, where $f=f(\theta)$ is a given continuous function on the unit circle.
(a) In class we saw that if $r \in[0,1)$ then the boundary value problem can be solved by

$$
u(r, \theta)=\sum_{n=\infty}^{\infty} a_{n} r^{|n|} e^{i n \theta}, \quad a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t
$$

or equivalently by

$$
u(r, \theta)=\int_{-\pi}^{\pi} f(t) P_{r}(\theta-t) d t, \quad P_{r}(\theta)=\frac{1}{2 \pi} \frac{1-r^{2}}{1-2 r \cos \theta+r^{2}} .
$$

Prove that this solution is unique.
(b) Prove that, for any $r \in[0,1)$ and any θ, we have

$$
\min f \leq u(r, \theta) \leq \max f
$$

What properties of P_{r} does this rely on?
(c) Give the solution in the following cases, writing the final answer without any integrals or complex numbers:
i. $f(\theta)=1$,
ii. $f(\theta)=\sin \theta$,
iii. $f(\theta)=\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$.
(d) Rewrite the answers from part (d) in terms of x and y using $x=r \cos \theta$ and $y=r \sin \theta$. Recall that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$.

1. For part (a) use (7.8) and for (b) use orthogonal projection (7.19).
2. (a) Mimic the proof of Corollary 4.13, using the energy $E[u]=\int_{D}|\nabla u|^{2}$.
(b) Plug $f(t) \leq \max f$ and $\min f \leq f(t)$ into the integral formula for u. The relevant properties of P can be extracted from this list, taken from Seeley's excellent Introduction to Fourier Series and Integrals.
(i) $P(r, \phi)$ is even in ϕ, that is, $P(r,-\phi)=P(r, \phi)$.
(ii) The maximum of $P(r, \phi)$ occurs at $\phi=0$, and is $(1+r) / 2 \pi(1-r)$.
(iii) $P(r, \phi)$ is monotone decreasing in $0 \leq \phi \leq \pi$, achieving a minimum of $(1-r) / 2 \pi(1+r)$ at $\phi=\pi$; thus $P>0$.
(iv) $\int_{-\pi}^{\pi} P(r, \phi) d \phi=1$. (This is easily checked by integrating the series for $P(r, \phi)$.)
(c) Use the series formula. Note that in each case the series has only a small number of nonzero terms.
