Kiril Datchev MA 495/595 Spring 2024

Homework 7

Due February 29th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. There are some hints on the second page.

- 1. (a) Verify that the functions 1, x, and $\cos x$ are mutually orthogonal on $(-\pi, \pi)$.
 - (b) Find constants a, b, and c that minimize $\int_{-\pi}^{\pi} |x^{37} a bx c \cos x|^2 dx$.
- 2. Let D be the unit disk in \mathbb{R}^2 , and consider the boundary value problem $\Delta u = 0$ in D, $u|_{\partial D} = f$, where $f = f(\theta)$ is a given continuous function on the unit circle.
 - (a) In class we saw that if $r \in [0, 1)$ then the boundary value problem can be solved by

$$u(r,\theta) = \sum_{n=\infty}^{\infty} a_n r^{|n|} e^{in\theta}, \qquad a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-int} dt,$$

or equivalently by

$$u(r,\theta) = \int_{-\pi}^{\pi} f(t) P_r(\theta - t) dt, \qquad P_r(\theta) = \frac{1}{2\pi} \frac{1 - r^2}{1 - 2r\cos\theta + r^2}.$$

Prove that this solution is unique.

(b) Prove that, for any $r \in [0, 1)$ and any θ , we have

$$\min f \le u(r,\theta) \le \max f.$$

What properties of P_r does this rely on?

- (c) Give the solution in the following cases, writing the final answer without any integrals or complex numbers:
 - i. $f(\theta) = 1$, ii. $f(\theta) = \sin \theta$, iii. $f(\theta) = \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$.
- (d) Rewrite the answers from part (d) in terms of x and y using $x = r \cos \theta$ and $y = r \sin \theta$. Recall that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$.

Hints:

- 1. For part (a) use (7.8) and for (b) use orthogonal projection (7.19).
- 2. (a) Mimic the proof of Corollary 4.13, using the energy $E[u] = \int_D |\nabla u|^2$.
 - (b) Plug $f(t) \leq \max f$ and $\min f \leq f(t)$ into the integral formula for u. The relevant properties of P can be extracted from this list, taken from Seeley's excellent Introduction to Fourier Series and Integrals.

(i) $P(r, \phi)$ is even in ϕ , that is, $P(r, -\phi) = P(r, \phi)$. (ii) The maximum of $P(r, \phi)$ occurs at $\phi = 0$, and is $(1 + r)/2\pi(1 - r)$. (iii) $P(r, \phi)$ is monotone decreasing in $0 \le \phi \le \pi$, achieving a minimum of $(1 - r)/2\pi(1 + r)$ at $\phi = \pi$; thus P > 0. (iv) $\int_{-\pi}^{\pi} P(r, \phi) d\phi = 1$. (This is easily checked by integrating the series for $P(r, \phi)$.)

(c) Use the series formula. Note that in each case the series has only a small number of nonzero terms.